MPH: a Library for Coupling Climate Component Models on
Distributed Memory Architectures

Chris H.Q. Ding and Yun He
CRD Division, Lawrence Berkeley National Laboratory
University of California, Berkeley, CA 94720, USA

Abstract

A growing trend in developing large and complex applications on today’s Teraflops computers is to
integrate stand-alone and/or semi-independent program components into a comprehensive simulation
package. We study how such a multi-component multi-executable application can effectively run on
distributed memory architectures. We identify four effective execution modes and develop the MPH
library to support application developments for utilizing these modes. MPH performs component-name
registration, resource allocation and initial component handshaking in a flexible way.

Keywords: multi-component, multi-executable, climate modeling, problem solving environment.

1 Introduction

With rapid increase of computing powers of the distributed-memory computers, clusters of Symmetric
Multi-Processors (SMP), the application problems also grow rapidly both in scale and complexity. Effec-
tively organizing large and complex simulation programs such that it is maintainable, re-useable, shareable
and high-performance at same time, becomes an important task for high performance computing.

Multiple component approach as a way to organize software is a natural evolution for many large
scale simulations, such as climate modeling, engine combustion simulations, etc. For example, in modeling
long-term global climate, NCAR’s community climate system model (CCSM)[4] consists of an atmosphere
model, an ocean model, a sea-ice model and a land surface model. These model components interact with
each other through a flux coupler component.

Very often, program components of the application are developed by different groups in different organi-
zations. Thus effective management of large scale software systems typically follows the modular approach,
i.e, each program component is a self-consistent, semi-independent system. Each component talks to other
components through a well defined interface and data structures involved in the interface. This approach
allows maximum flexibility and independence. The developers of a particular component can use whatever
the algorithm and method they see fit, depending on suitability, time to completion, practicality etc. This
trend is well reflected in the software industry. The prominent example is CORBA [2]. Another devel-
opment along this line within the high performance computing community is the Common Component
Architecture (CCA) project [5].

In this paper, we describe the MPH library for coupling stand-alone and/or semi-independent program
components into a comprehensive simulation system. The development of MPH for climate/weather mod-
eling community is driven by this component software trend; MPH, in turn, further promotes this trend
in climate model software developments.

There are other software development trends that emphasize completeness of the software system. Here
we mention two popular types. A framework paradigm defines most common data and software structures

and provides full-feature functionality, which goes much beyond pure interface. Some examples are PETSc
[1], POOMA [15], ESMF [11], to name a few. Another type is the Problem Solving Environment, which
essentially defines all the structures and skeleton codes for solving many different problems within a clearly
defined special domain, such as Purdue PSEs [10], ASCI PSE [13], or even more focused on special area such
as NWChem [9]. However, our approach is on developing complex simulation packages that utilize stand-
alone or semi-independent components which are not necessarily developed by same group or institutions.
Building a comprehensive application system utilizing (and modifing) existing codes developed by different
groups is one of the standard development approaches.

2 Multi-Component Multi-Executable Applications on Distributed Mem-
ory Architectures

Here we provide a systemtical study on how a multi-component multi-executable application codes can
effectively run on distributed memory architectures. This study forms the basis for the development of

MPH.

There are two interelated aspects on a multi-component application codes running on a distributed
memory computer: (1) how different components are integrated into a single application software structure;
(2) the execution modes of the application system on distributed memory computers. Several new concepts
on distributed multi-component systems are formalized.

First, we preserve the stand-alone or semi-independent nature of each component model. That is, these
stand-alone models are independently compiled to its own binary executable file. Depending upon some
runtime parameter setting, each component either do a stand-alone computation, or interact with other
independent executables. Thus executables are the base units of a multi-component simulation systems.
Executables are not allowed to overlap on processors, i.e, each processor or MPI process is exclusively
owned by an executable. This is dictated by the processor sharing policy on most current HPC platforms.

Second, an executable may contain several program components. Different components may share a
global address space. All components are written as modules and are finally merged into one single source
code. They are compiled into a single executable. For example, an atmosphere circulation model may
contain air convection dynamics, vertical radiation and clouds physics, land-surface modules, modules for
chemical tracers such as COg, etc. Most current HPC applications are of this type. In these executables,
different components may run on different processor subsets; Some of components may also share same
processor subset.

Therefore, on distributed memory computers, a multi-component user application system may con-
sist of several executables, each of them could contain a number of program components. In MPH, we
systematically study the following different possible combinations.

(1) Single-Component ezecutable, Single-Executable application (SCSE)

)
(3) Single-Component ezecutable, Multi-Executable application (SCME)
(4) Multi-Component ezecutable, Multi-Executable application (MCME)
(5) Multi-Instance ezecutable, Multi-Executable application (MIME)

In the following, we discuss each of these modes in some details. All these modes are supported by MPH

(2) Multi-Component ezecutable, Single-Executable application (MCSE

in a unified interface. Interfaces for each modes are discussed in Section 3.

2.1 Single-Component FEzecutable, Single-Executable Application (SCSE)

This is the conventional mode. The complete program is a single component, and it is compiled into a
single executable. We mention it for completeness.

2.2 Multi-Component Fzecutable, Single-Executable Application (MCSE)

The entire application is contained in a single executable. Components may run on different processor
subsets. Two or more components may also run on a same processor subset; They will run one after
another, in a sequential fashion. The widely used Parallel Climate Model (PCM) [16] uses this mode.

All components are written as modules and are finally merged into one single source code. In this tight
software integration mechanism, there are many programming issues associated with this approach. Name
conflicts have to be resolved. Static allocation will increase unnecessary memory usage: component A on
processor group A will still allocate memory for statical allocations in module component B which actually
sits in processor group B. Data inputs and outputs also become more complicated. A large number of
coordination must be done to ensure consistency, user interface flexibility, etc. Furthermore, if one needs
to create a stand-alone version of the component, sufficient modifications (such as preprocessor ifdef etc)
need to be inserted. The good feature of this approach is that the code is a single program, something
everyone (including those with least programming experience) understands. The job launching process is
also simplified greatly: it is just like any other normal program.

2.3 Single-Component Fzrecutable, Multi-Executable Application (SCME)

The entire application consists of several executables. Most if not all current HPC platforms adopts a
resource allocation policy that does not allow two executables overlap on the same subset of processors.
(On clusters of SMP architectures, it is allowed that two executables resides on the SMP node, each
occupying different set of processors.)

Each executable contains a single program component. Inside the executable, there are flags to detect
if the executable is running in a stand-alone mode or in a joint multi-executable environment. This
integration mechanism allows maximum flexiblity in software developments. Different components can use
different programming languages, different internal structures and conventions, etc. Different components
do not even know the source codes of other components. They communicate with each other through a well
defined common interface, which is the only constraint in development. CORBA is taking this approach.
The first version of Climate System Model also uses this approach. One issue with this approach is the
job launching process. On different vendor systems, the launching mechanisms vary slightly. But this is
manangeable, since major HPC vendors are rather limited.

It is possible that the non-overlapping resource allocation policy can be modified. In that case, however,
the entire load balance in both data distribution and task distribution of a parallel application will become
questionable, because suddenly a processor (or an SMP node) will have another user job that takes CPU
cycles and memory away in an entirely unpredictable way.

2.4 Multi-Component FEzecutable, Multi-Executable Application (MCME)

The entire application consists of several executables, each of them contains several component programs.
Different executables runs on different set of processors. Within each executable, different components
may or may not overlap on processors. The number of processors allocated for each executable are de-
termined by the multi-executable job launching commands. However, within each executable, processor
allocation for each component is determined by the executable, not the job launching command. This is

the comprehensive mechanism.

The component software integration for each executable is the same as in MCSE (Section 2.2).

2.5 Multi-Instance Fzecutable for Ensemble simulations

FEnsemble simulation is a new emerging trend in climate modeling for assessing the uncertainties in climate
predictions. In ensemble simulations, identical codes are run multiple times, each time with a different set
of input parameters. Conventional approach is to do the K runs as K independent jobs. The simulation
results of the K runs are then averaged to get ensemble avarage. It is sometimes advantageous to do the
K runs simultaneously: (a) nonlinear order statistics can be computed by aggregating instantaneous fields
from K runs periodically (b) based on current simulation results on the K runs, the future simulation
direction can be dynamically adjusted at real time. Nonlinear statistics and dynamical control cannot be
done if the K runs are performed as independent runs. MPH provides a convenient framework to do the
ensemble simulations.

One may use MCME for ensemble simulations by compiling K different executables with names “ocean-
17, “ocean-2”, - - -, “ocean-K”, etc. These executables have identical source codes, except the component
names and input/output file names are different. However, maintaining K executables and keeping track
of the component input/output names of each executable increase the complexity and thus chances of
errors of a large and extensive simulation. It is desirable to maintain only one executable, but different
input/output names can be passed on to different ensembles.

3 MPH: Multiple Program Components Handshaking

We have identified the typical modes for multi-components multi-executable applications in the above
section. One common critical issue in these modes is that when different executable images are loaded
onto different processor subsets, one executable does not know the existance of other executables. Each
processor only knowns its processor ID within the entire processors allocated for this potentially multi-
executable applications.

For different executables to recognize each other, the only way is to assign a unique name to each
executable as the identifier for that executable. We then require a handshaking process to set up a
registry of executable names and communication channels. On tightly coupled HPC platforms, we use
MPI communicators for high performance and portability.

A multi-component executable may contain several components, and therefore each component requires
a unique component name. With careful examination of the necessary steps involved, it turns out that the
“executable name” is not necessary for multi-component executables. Complete specification of names for
all components within the multi-component executable is sufficient. Of course, the component name on a
single-component executable is sufficient for identifying both the component and the executable. For these
reasons, we use component names throught this paper, the corresponding executables are always clear by
the context. For the same reason, we call this process “components handshaking”, instead of “executables
handshaking”.

The MPH library is developed to handle this critical initial components handshaking and registration
process in a distributed environment. MPH supports component name registration, resource allocation for
each component, different execution modes as discussed in Section 2, and standard-out redirection.

One design goal of MPH is the complete flexibility. The number of components and executables, names
of each components, processor allocation are all determined by a components registration file read in when
the multi-executable job starts on different subsets of processors. One can trivially insert more components
or delete some components from the application system. We found that this is one important feature in

climate model developments.

In next section we describe MPH main interface and additional MPH functionalities. In Section 5, we
explain the algorithms and implmentation of MPH. In Section 6, we discuss the status of MPH and current
applications that have adopted MPH.

4 MPH Main Interface and Functionality

A unified interface is provided for all different software integration modes. Due to the variety and level of
complexity, we explain the interface in each integration modes separately. This will also serve as concrete
introduction to these new concepts of component integration.

One point to bear in mind is that for a multi-component executable, usually a master program is
present that prepares and initiates different components on different (or overlapping) subsets of processors.
For a single-component executable, such a master program does not exist.

4.1 Single-Component Executable, Multi-Executable Application (SCME)

In this mode, each component has a main program and is a complete stand-alone executable. Each
component calls the shared handshaking routine with an input nametag and an output which is a MPI
communicator.

For example, using the climate modeling system as the example. On atmosphere component, in the
main program, we call

atmosphere_World = MPH_components (namel='"atmosphere')
On ocean component,in the main program, we call

ocean_World = MPH_components(namel="ocean")

”

Similarly, for “land”, “ice”, and “coupler” components. The names of the components are registered in

?registration.in” file. The order of file names are irrelevant.

BEGIN
atmosphere
ocean
land

ice
coupler
END

An important feature of MPH is that the nametag is for identifying a given component; its exact name
is entirely arbitrary. One may use "NCAR_atm”, or "UCLA _atm”, or any other names for atmosphere
component. The only necessary constraint here is that the nametags called in atmosphere component
must appear correctly in the registration file. In this way, nothing is hardwired into the implementation.
Suppose later, one has a need to insert a graphics component to produce a movie about the simulation,
one can simply add the nametag of the graphics into the registration file.

4.2 Multi-Component executable, Single-Executable application (MCSE)

In this mechanism, each component is a subroutine or a module, but all codes are compiled into a single
executable. A master program will call the appropriate subroutine on the appropriate subset of processors.
In the master program, the following call is made first:

exe_world = MPH_components (namel='"atmosphere",
name2="ocean'", name3='"coupler")

This setup routine informs MPH that there will be 3 components, with nametags ”"atmosphere”, "ocean”

and ”coupler”. Here again, nametags are arbitrary, except they must match the ”registration.in” file that
determines which processors are associated with which component.

Afterwards in the master program, we call

if (PROC_in_component("ocean", comm)) call ocean_xyz(comm)
if (PROC_in_component ("atmosphere'",comm)) call atmosphere(comm)
if (PROC_in_component ("coupler",comm)) call coupler_abc(comm)

Note that subroutine names do not have be to same as the corresponding nametags. We use ” xyz”, ”_abc”
etc to emphasize this fact.

The resource allocation “registration.in” is a user-supplied file. It contains the list of component name-
tags and processor ranges. For example, one sample registration file is

BEGIN
Multi_Component_Begin
atmosphere O 15

ocean 16 31
coupler 32 35
Multi_Component_End
END

for 3 components on 36 processors (or MPI processes). Here Multi_Component Begin and Multi_Component End
specify the start and end of a multi-component executable. In this registration file, no component overlaps
with another on the same processor.

MPH allows components to overlap on their processor allocations. For example, in

BEGIN

Multi_Component_Begin

atmosphere O 15

ocean 16 31

coupler 0 15 ! overlap with atmosphere
Multi_Component_End

END

The “atmosphere” component overlaps with “coupler” component. This feature allows more flexibility in
code structure. It is users’ responsibility to know who is overlapping with who else, and invoke components
appropriately. One can use the logical function PROC_in_component ("ocean'", ocean_comm) to check if
”ocean” covers this processor, and obtain the correct "ocean” communicator “ocean_comm”. When sending
to components on the overlapped processors, we recommend to use message tags to distinguish different
components.

4.3 Multi-Component Multi-Executable Application (MCME)

This is the most flexible mode. Suppose we have following example contains 3 executables: 1st executable
has 3 components: atmosphere, land, chemistry; 2nd executable has 2 components: ocean, ice; 3rd exe-
cutable has a single component: coupler. Each component could contain up to 10 components.

On the atm-land-chem executable, we invoke MPH by

mpi_exec_world = MPH_components(namel="atmosphere",
name2="1land", name3="chemistry")

On the ocean_ice executable, we invoke as

mpi_exec_world = MPH_components(namel="ocean",name2="ice"),
In the coupler.F file, the coupler component is invoked as

mpi_exec_world = MPH_components(namel="coupler")
The following registration file is used for this 3-executable problem:

BEGIN

Multi_Component_Begin

atmosphere 0 3

land o 3 ! overlap with atmosphere
chemistry 4 7

Multi_Component_End

Multi_Component_Begin

ocean 0 15
ice 16 31
Multi_Component_End
coupler

END

The single-component executable with component coupler is listed directly. Within the first multi-
component executable, atmosphere and land components overlap completely on processors allocations.

4.4 Multi-Instance Executable for Ensemble Simulations

Multi-instance executable is a special type of executables. It differs from regular single-component and
multi-component executables in that this particular executable is replicated multiple times (multiple in-
stances) on different processor subsets. There is no limit of the number of instances in such special
executables.

A multi-instance executable is setup by envoking
Ocean_world = MPH_multi_instance("Ocean")

Note that the component name prefix "Ocean” determines that all instances of this executable must have
component names using this prefix.

The number of instances and specific component names for these instances are specified in the runtime
resource allocation/registration file. An example of 3 instances could look like this:

BEGIN

Multi_Instance_Begin

Oceanl 0 15 1infile_1 outfile_1 1logfile_1 alpha=3 debug=off
Ocean2 16 31 infile_2 outfile_2 beta=4.5 debug=on

Ocean3 32 47 infile_3 dynamics=finite_volume
Multi_Instance_End

statistics

END

Here Multi Instance Begin and Multi_Instance_End specify the start and end of a multi-instance exe-
cutable.

Upon invocation of multi-instance executable, MPH replicate 3 instances of “Ocean” as 3 components,
on the specified MPI processes. Each component will have the expanded component names (Oceanl,
Ocean2, and Ocean3) as specified in the registration file.

In this registration file, a single-component executable with name “statistics” is also present. This
executable is invoked as before (cf. Section 4.1); it collects instentaneous fields, compute statistics and
controls evolution of each “Ocean” instances. Any other mix of single-component and/or multi-component
executables may coexist with multi-instance executables.

Up to 5 character strings can be appended in the same line of the instance_name in the registration file.
This is for passing input/output file names and parameters to the specific Ocean instance. MPH_Ensemble
also provides several functions to get values for specific parameters. Examples are

alpha = MPH_get_argument(int="alpha")
flag = MPH_get_argument (char="debug")
filename = MPH_get_argument(field=1)

Thus alpha will get integer 3 if a string “alpha=3" is present, flag will get string “off” if a string
“debug=off” is present, and filename will get string “infile_3” if a string “infile_3” is in the first field. This
command line argument passage uses the function overloading feature of Fortran 90.

We suggest two examples where multi-instance-components are used. In a typical ensemble simulation
example, 4 ocean ensembles are running concurrently using multi-instance executable, while a single-
component executable is running simultaneously collecting statistics and controlling the evolution of dif-
ferent ensembles. In a global warming scenario simulation, 3 instances of an atmospheric model are running
concurrently, each testing a different warming scenario with different CO5 emmission rates, but all couple
to the same ocean circulation model which feels the “average” effects of the atmosphere. The ocean model
uses a multi-component executable.

5 Other MPH Functionalities

5.1 Joining Two Components

Besides solving the basic handshaking problem, MPH also provides a number of other functionalities for
the ease of communication between components.

A joint communicator between any two components could be created by a call to
comm_new = MPH_comm_join ("atmosphere", "ocean'")

The output comm_new communicator will contain all processors in both components, with processors in
7atmosphere” component ranked first (rank 0 - 15) and processors in "ocean” component ranked second
(rank 16 - 23) assuming atmosphere has 16 processors and ocean has 8 processors. If you reverse atmosphere
with ocean in the call, then ocean processors will rank 0 - 7 and atmosphere processors will rank 8-23. With
this joint communicator, collective operations such as a data redistribution could easily be performed.

5.2 Inter-Component Communications

MPI communication between local processors and remote processors (processors on other components) are
invoked through component names and the local id. E.g., a processor on atmosphere wants to send Process
3 on ocean, it invokes

MPI_send(..., MPH_global_id("ocean", 3),MPH_Global_World,.....)

MPH_Global_Worldis the global communicator within this part of the application. It will be MPI_Comm_World
for a simple multi-component application. The reason we did not use inter-communicator is because the
entire application is assumed to run on a tighly coupled HPC computer with a single MPI_Comm_World.

An inter-communicator would be more appropriate for a heterogeneous client-server environment, where
CORBA or DCE are more widely used.

5.3 Inquiry on multi-component environment

MPH also provides a set of inquiry functions to get information about the multi-component environment.
At run time, a component simply calls these subroutines to find out the processor configuration, component-
name, etc. Some examples are:

MPH_local_proc_id()
MPH_global_proc_id()
MPH_comp_name ()
MPH_total_components()
MPH_exe_up_proc_limit()
MPH_exe_low_proc_limit().

5.4 Multi-Channel Output

Suppose we have an application with five components running. Each component normally prints out
messages by print #, write(*) for monitoring, control, diagnostics, and other purposes. If nothing
special is done, all these messages sent to stdout will go to the session launching terminal. The mixed
output would be extremely difficult to dicipher.

The ideal solution to this problem is for each component to write to its own output (log) file. In
practice, however, there are a number of difficulties. First, file systems on different platforms are typically
very different. Some of the parallel file system on the platform provides a “log” mode, i.e., writes from
different processors will be bufferred and appended in some (random) order, such as PF'S on Intel Paragon
(without this “log” mode, in the usual "unformatted” mode, different writes could over-write each other
and cause error conditions). In these cases, we need to modify these print *, write(*) statements and
file open statements to achieve the desired effects. However, many existing components contain very large
number of these statements which will be very time-consuming to modify. We need to find a way to do
this automatically.

On many file systems, such as IBM SP’s GPFS, there is no such “log” mode. Although MPI-IO [8§]
does support the ”log” mode, the write statement syntax in MPIO is sufficiently different from print *,
write(*) that makes a simple script-based automatic preprocessing difficult. (We emphasize here that
the stdout on SP does support buffered I/0, similar to “log” mode; but it supports only one such 1/0O
stream, not multiple stdout streams; that is the difficulty).

MPH resolves this difficulty by redirecting the stdout. Typically, local processor 0 of each component
is responsible for print out messages. The stdoutfor this processor is redirected by

MPH_redirect_output (component_name)

and the output messages from each component will go to component_name.log file. All other occasional
writes from all other processors are stored in one combined standard output file. The log file names of
those components are defined by run time environment variables either in command line or in batch run
script. This method is originally implemented in NCAR’s CCSM code.

6 Algorithms and Implementation for MPH

Although most applications running on HPC platforms are single exectable codes, multi-executable jobs
as discussed in this paper are still minority of applications. But multi-executable jobs are growing as the
size and complexity of the “grand challenge” problems being solved on current large scale computers. It is
important to understand this multi-executable job environment for the implementation of MPH.

Currently, all major HPC platforms support multi-executable jobs using an MPP-run like command.
For example, on IBM SP, we use the MPMD mode, “-pgmmodel mpmd” to launch such a job. Different
executables are specified in a command file using “-cmdfile”. Similar commands exist for Compaq Alpha
clusters, and SGI Origin (detailed launching commands for each plotform are described in details in test
examples available online [6]).

Behind the seemingly different job launching commands on different platforms, the internal system
environments are identical. When a job with K executables starts on the specified processor domains, all
executables share the same MPI_Comm_World, but with different logical processor IDs (MPI process IDs on
cluster of SMP architetcures). How the processor IDs are assigned to each executable depends on the job
launching commands. Since no executable can overlap on same processors, the processor 1D assignments
are unique.

However, at job start, no MPI communicator is formed for each executable, since each processor
does not know what executables are loaded onto other processors. MPH establishes the multi-component
environment multi-executable environment by first creating local communicators for each component. This
task depends crucially on the fact that each component has a unique component-name provided by the
run-time registration file.

It is important to distinguish executables from components. A single-component executable has one
component, thus its communicator is unique. A multi-component executable has several components,
and components could overlap on processor subsets. We first describe MPH implementation for single-
component executables. Later we describe MPH implementation for multi-component executables.

(1) Single-Component Executable Handshaking

Upon startup, the information in the registration file is read by the root processor (global Processor 1D
= 0) and broadcasts to all processors. Based on number of executables (number of components), each exe-
cutable obtains a unique component_id. Using this component_id as “color”, MPH calls MPTI_Comm_Split ()
to split MPI_Comm_World into non-overlapping local communicators, each covering exactly the appropriate
processor-subset for the component.

Once component communicators are established, information exchange between different components
can be conveniently handled by the rank-0 processors in each component. Also, two components can be
joined by merging their communicators.

(2) Multi-Component Executable Handshaking

If the components within each executable are non-overlapping (on processors), all components can
be established using a single invocation of MPI_Comm_Split() to split the current communicator for the
executable into communicators one for each component.

MPH allows different components within an executable to be partially or completely overlapping on pro-
cessors. (This allows a single unified user interface for all four software integration modes). In these cases,
we create component communicators by repeatedly invoking MPI_Comm_Split, creating one component
communicator at a time.

The codes are written in Fortran 90 for supporting CCSM development at present. We plan create a
C-++4 version later.

10

7 Applications

The development of the MPH library is primarily motivated for NCAR Community Climate System Model
(CCSM) development, as mentioned earlier. The large number of different components in CCSM, atmo-
sphere, ocean, land, ice, flux coupler and many other potential components such as biochemistry, graph-
ics for visulization, etc., require a general purpose handshaking library to setup the distributed multi-
component environment.

MPH is an application driven software development. MPH version 1 is first developed for the single-
component multi-executable mode (see Sections 2.3 and 3.3) for the CCSM model. MPH version 2 is
then developed for the multi-component single-executable mode (see Sections 2.2 and 3.2) for the PCM
model[16]. MPH version 3 is developed for the multi-component multi-executable mode (see Sections 2.4
and 3.4) to provide a unified user interface for MPH1 and MPH2. The multi-instance-component and the
command line argument passing (discussed in Section 3.4) are currently being implemented to support
climate ensemble simulations, a new emerging trend to ascertain the uncertainty in climate predictions.

All MPH funtionalities (except multi-instance-component in Section 3.4) are currently working on IBM
SP, SGI Origin, Compaq AlphaSC, and Linux clusters. Source codes and instructions on how to compile
and run on all these platforms are publicly available on our MPH web site [6].

MPH is currently been adopted in CCSM development[4]. CCSM is the U.S. flag-ship coupled climate
model system most widely in long-term climate system modeling in the U.S. and in the world. MPH
is adopted in NCAR’s Weather Research and Forcast (WRF) model [17], which is the new generation
of the mesoscale model (MM5) [14]. Several dozen countries use MM5 for their routine regional mid-
range weather/climate forecasts. MPH is also adopted in Colorado State University’s icosahedra grid
coupled model[3]. Some others that show interest are: SGI for coupled model; a group in Germany, for
coupled climate model; and a group in UK, for ensemble simulations. A Model Coupling Toolkit [12] for
communication between different model components also uses MPH.

8 Summary and Discussions

We describe the rational, functionality and implementation of MPH for coupling stand-alone and/or semi-
independent program components into a comprehensive simulation system. On today’s Teraflop computers,
as the problems been attacked become ever larger and complex, this application software development
approach becomes necessary. The development of MPH for climate/weather modeling community is driven
by this trend which in turn further promotes this trend.

We have systematically studied practical modes that a multi-executable application code can be ef-
fectively executed on current major HPC platforms. The resulting four modes are discussed in details in
Sections 2 and 3. These form the basis that MPH is developed to support them by providing a simple,
flexible and unified interface for coupling independent components together. With convenient MPH testing
codes, compile/run scripts on all major plotforms, this work also promotes the use of the multi-component
multi-executable approach in the climate modeling software developments.

We hope that the utilization of multi-component multi-executable approach for large and comprehensive
appliocations described here will help HPC vendors to develop /implement more useful user interface.

Acknowledgement. MPH is developed in collaboration with Tony Craig, Brian Kauffman, Vince Way-
land and Tom Bettge of National Center of Atmospheric Research, and Rob Jacobs and Jay Larson of
Argonne National Laboratory. This work is supported by the U.S. Department of Energy, Office of Biolog-
ical and Environmental Research, Climate Change Prediction Program, and Office of Computational and

11

Technology Research, Division of Mathematical, Information, and Computational Sciences, under contract

number DE-ACO03-76SF00098.

References

[1]

[16]

[17]

S. Balay, K. Buschelman, W.D.Gropp, D. Kaushik, L.C. McInnes and B.F. Smith. 2001. PETSc: Portable,
Extensible Toolkit for Scientific Computation Homepage: http://www-fp.mcs.anl.gov/petsc/

CORBA: Common Object Request Broker Architecture. http://www.corba.org/
Colorado State University General Circulation Model. http://kiwi.atmos.colostate.edu/BUGS/
Community Climate System Model. http://www.ccsm.ucar.edu/

L. Curfman, D. Gannon, S. Kohn, C. Rasmussen, D. Bernholdt, J, Kohl, J. Nieplocha, R. Armstrong, S.
Parker, etc. Common Component Architecture Forum. http://www.acl.lanl.gov/cca-forum/

C. Ding and Yun He. MPH: a Library for Distributed Multi-Component Environment
http://www.nersc.gov/research/SCG /acpi/MPH/

A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V. Sunderam, 1994. PVM: Parallel Virtual Ma-
chine, a User’s Guide and Tutorial for Networked Parallel Computing. Scientific and Engineering Computaiton
Series. The MIT Press, 279pp. See more info at http://www.epm.ornl.gov/pvm/

W. Gropp, E. Lusk, and R. Thakur, 1999. Using MPI-2, published by MIT Press, 382pp. See more info at
http://www.mpi-forum.org/

High Performance Computational Chemistry Group, W.R. Wiley Environmental Molecular Sci-
ences Laboratory, Pacific Northwest National Laboratory. NWChem computational chemistry package.
http://www.emsl.pnl.gov:2080/docs/nwchem/

E.N. Houstis, J.R. Rice, N. Ramakrishnan, T. Drashansky, S. Weerawarana, A. Joshi, and C.E. Houstis, 1998.
Multidisciplinary Problem Solving Environments for Computational Science. Advances in Computers, Vol. 46
(M. Zelkowitz, ed.), Academic Press, 401-438. See more info about Purdue Problem Solving Environments at
http://www.cs.purdue.edu/research/cse/pses/

T. Killeen, J. Marshall, A. Silva, C. Hill, V. Balaji, and C. DeLuca, etc. Earth System Modeling Framework.
http://www.esmf.ucar.edu/ http://sdcd.gsfc.nasa.gov/ESS/esmf_tasc/

J.W. Larson, R.L. Jacob, I.T. Foster, and J. Guo, Model Coupling Toolkit, Argonne National Laboratory,
Tech report. http://www-unix.mcs.anl.gov/ larson/mct.

S. Louis, and J. May, etc. ASCI Problem Solving Environment. http://www.lInl.gov/asci/pse/
PSU/NCAR Mesoscale Model. http://www.mmm.ucar.edu/mmb/

J.V.W. Reynders, P.J. Hinker, J.C. Cummings, S.R. Atlas, S. Banerjee, W.F. Humphrey, S.R.Karmesin, K.
Keahey, M. Srikant, and M. Tholburn, 1995. POOMA: A Framework for Scientific Simulation on Parallel
Architectures, Supercomputing 95. See more info about POOMA: Parallel Object-Oriented Methods and
Applications at http://www.acl.lanl.gov/pooma/

W. Washington, J. Arblaster, T. Bettge, J. Meehl, G. Strand, and V. Wayland. Parallel Climate Model.
http://www.cgd.ucar.edu/pem/

Weather Research and Forcasting (WRF) model. http://www.wrf-model.org/

12

